
A JavaScript tool to present Mathematical Morphology to

beginner

César C. Nuñez and Aura Conci

Universidade Federal Fluminense (UFF), Brazil
{cnunez,aconci}@ic.uff.br

1. Introduction

This work presents an Object Oriented JavaScript
program for learning basics of binary Mathemat-
ical Morphology. It employs DOM (Document
Object Model) resources supported by the follow-
ing browsers (or compatibles): Internet Explorer
v5.0+, Netscape v6.0+, Opera v7.0+, Firefox
v1.0+ or Mozilla v1.7+. It is composed of only
four Hyper Text Markup Language (.html) files, one
file of Cascading Style Sheets (.css), three external
JavaScript files (.js) and fourteen (.gif) figures.
The code is open and can be included in html pages
or adapted to other applications. Figure 1 shows its
appearance.

The implementation can be used for educational
purposes in several different ways. In the simplest
one, on the internet, it allows experiences using the
implemented operations and operators (such as ex-
pansion, contraction, intersection, union, subtrac-
tion, complement, reflection, dilation, erosion, open-
ing, closing, etc). Images and structuring elements
can be drawn on the screen using painting tools of
various types. Composed operators such as top-hat,
hit-or-miss, morphological gradient, and any other
built from previously defined operators may be de-
fined. Combination may be in cascade or in a parallel
structure. Once tested in the tool, the correspond-
ing code of the composed operators can be used in
another program.

Students of JavaScript language can learn the ba-
sic structure of the program and improve it including
new functions since the code is easy and comprehen-
sible. For beginners in mathematical courses, the
tool can be used to explain the common set theory
operations (union, complement, intersection, sub-
traction, etc). In addition, it works as laboratory
experiments for use in classrooms.

2. The tool

The tool is an open code and it has been created to
be used on the main browsers/compatible in the mar-
ket, as long as they support CSS and DOM. There

is no need for any additional plug-in or any other
components. It allows the creation of simple binary
images in a matrix of 30 × 30 points, and there are
11 built-in operations which can be combined in any
quantity and order. However, all these limits can
be increased in the implementation according to the
user needs. The number of options has been kept
small in order to maintain simplicity of use and one-
frame interface.

Objects and methods The tool has two main
classes of objects: matrixDisplay and imageOb-
ject. The first one defines an object type that sim-
ulates the pixels on the screen. It creates a square
block matrix that works as an image in the user
display. The dimension of this matrix can be dy-
namically defined, during object instantiation. Each
block can assume two states (black and white), al-
lowing the representation of images as bitmaps.

The data about each block are kept in a bi-
dimensional array and can be altered according to
the image being displayed (active image). An image
is linked to an object and, at any time, the active
image can be altered. The only method of this class,
clearDisplay, is used to clean the display, chang-
ing all blocks into white. On the program interface,
there are two image display areas: one for the im-
age definition, with 30×30 blocks, and other for the
structuring element definition, with 5× 5 blocks.

The imageObject has two attributes: its own
identifier, and a bi-dimensional coordinate array,
that keeps the points of the active image. It has
five methods: addPixel adds a new pair of coordi-
nates to the array; delPixel removes a given pair
of coordinates from the array; showArray sets up a
string that serves to represent, textually, the coordi-
nate’s array; showImage shows the linked display’s
image; clearAll deletes array’s coordinates.

In addition to these two classes, the tool has var-
ious functions that perform tasks related to user in-
teraction and apply the operations, transforming the
original image.

User interface User interaction is performed
through four distinct areas: the brush, the main de-
sign, the structuring element, and operation defini-
tion areas (Figure 1). The brush area, located on
the top-left, is used for definition of the brushes to
be used for image construction. There is also a tool

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 2, p. 75–76.

http://urlib.net/dpi.inpe.br/ismm@80/2007/05.15.17.59

75



to fill quickly an entire bounded area: if the clicked
block is white, the corresponding area will be painted
black, and if the clicked block is already painted, it
acts as an eraser, removing the black points from
the area. The brushes only work on the design area.
Design area consists of a matrix with 30× 30 blocks
and is used to create and display transformed im-
ages. The displayed image will be modified accord-
ing to the transformations. The working image is
associated to character ”A” for identification on the
transformation operations. The identification label
indicates which image is displayed on the screen.
There is a box to display the coordinates of the im-
age points. The ”x” button hides this box if selected
by the user.

Figure 1. Tool interface.

The structuring element area, similar to the design
area, simulates bitmaps of 5× 5 pixels for construc-
tion of structuring elements. In this area, the brush
size is fixed to one point, regardless of the selected
brush size. On the right hand side there is a box
showing the coordinates of the structuring elements
points. There are buttons for cleaning the design
and for hiding or showing this box.

The operator definition area is used to define the
transformations to be applied to the image. There
are five control operations: add; delete; make; quick
access; done and open help file. They allow, re-
spectively, the addition of a new operation to the
stack, removing of non-selected operations from the
stack, making an image active in the design matrix
performing the operations stored in the stack, and
opening the help file.

Shortcut keys The interface has shortcut keys to
the interface visual controls. TAB changes the brush
size. DELETE cleans the main matrix active image.
If the active image is the resulting image, the work-

ing image becomes the active image. F2 hides or ex-
hibits the box with the active image coordinate on
the main matrix. DEL (in numeric keyboard part)
clears the structuring element’s image. F4 hides or
exhibits the box with the structuring element’s co-
ordinate. Key + (in the numeric keyboard) adds
an operation to the operation stack. Key - removes
the non-selected operations from the operation stack.
F1 opens a pop-up window with the help file. ES-
CAPE makes the working image the active image of
the main matrix. SPACE BAR displays the work-
ing image, without making it the active image; when
the space bar is released, it displays back the result-
ing image. ENTER performs the operations selected
from the stack.

Defining new operators To configure a sequence
of transformations, the user must click the ”+” but-
ton of the interface. The first selected operation
must always be identified by character ”A”. The user
then selects the operation from the list-box. Dila-
tion, erosion, opening, and closing operations uses
the structuring element (EL). Other operations ask
for definition of the neighborhood shape or for the
name of another image that has already been calcu-
lated (each image may be identified by one character
only). In the last field to the right of each operation
one character that identifies the resulting image must
be chosen. This character can be used in other op-
erations, if one wants to apply transformations on
cascade. In case of many cascade operations, the
resulting image will be the answer to the last op-
eration, or their sequence, if they have been config-
ured on cascade form. To cascade the operations,
the character of the last field has to be the same as
the letter of the first field of the next operation.

3. Conclusions

The tool presented in this article only requires a
browser to be executed. It is open code, and it
can be used also in JavaScript classes. This tool
can be downloaded from http://www.ic.uff.br/
~aconci/Morfologia where the source-code is also
available. Helps and hints are provided in Por-
tuguese.

References

[1] G. J. F. Banon and J. Barrera, Bases da morfologia
matemática para a análise de imagens binárias, 2nd,
INPE, São José dos Campos, 1998.

[2] J. Serra, Image Analysis and Mathematical Morphology,
Academic Press, London, 1982.

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 2, p. 75–76.

http://urlib.net/dpi.inpe.br/ismm@80/2007/05.15.17.59

76




