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1. Introduction

In order to understand the mechanism of the heart,
clinicians and researchers analyze global and local
deformations of the cardiac muscle and strive to mea-
sure the parameters of its movement. In this context,
our purpose is to estimate the twisting part of the de-
formation of the cardiac muscle, which is a major pa-
rameter. Our approach is based on the following two
main steps: first, the analysis of the twisting requires
the use of a non-conventional cardiac imaging tech-
nique: tagged MRI is the chosen technique. Second,
our work presents a novel heart’s twisting model-
ing, a dilatation-rotation model which estimates the
deformation of closed curves located in the left ven-
tricular on short axes views. Section 2 recalls the
physic principle of tagged MRI combined to a pro-
cessing method called ETC. Section 3 presents the
movement’s modeling and its parameters estimation.
Section 4 shows the corresponding main results.

2. Tagged MRI and ETC method

Tagged magnetic resonance imaging (MRI) tech-
niques enable the visualization of inner-wall motion
of the heart: it consists of adding a regular pattern
at the beginning of a normal cine-MRI sequence.
The most usual pattern (SPAMM [1], CSPAMM [2])
is a set of 2 orthogonally tagged sequences with a
sinusoidal-like profile, yielding alternating white and
black stripes.

A fast and automatic analysis method called
ETC [3] was developed. ETC proposes an origi-
nal description of tags as local minima of 1D sig-
nals. These signals are related to the lines or the
columns of the images. This leads to a new formu-
lation of the tag tracking problem as an Extrema
Temporal Chaining (ETC, see Figure 1). We vali-
dated and compared its results to another classical
method called HARP (HARmonic Phase images) [4].

Figure 1. Basic principle of ETC.

3. Contraction-rotation modeling

Measuring the twisting angle and the contraction
factor requires to choose any short axis plane, where
the inner-wall rotation is the most visible. Usually,
the gravity center is assumed to be the rotation cen-
ter and is not linked to the movement. Such assump-
tion being not valid, it will not be made in this work:
the rotation center is supposed unknown.

Dilatation-rotation equation. Thus we directly
model the curve’s deformations as an infinitesimal
contraction-rotation movement. We assume two hy-
pothesis: the curve’s contraction is a dilatation, and
both transformations have the same center ~C0(t).
Let us consider the deformation between times t and
t + dt. Let ~Rθ = θ~z be the instant rotation vector, ~z
being a unitary vector perpendicular to the imaging
plane. Let λ(t) be the dilatation factor and ~M(t)
be the position vector of any point of the considered
curve at time t. We obtain the final movement equa-
tion by combining (i.e composing) the dilatation to
the rotation:

~M(t + dt) =

= λ(t).[ ~M(t)− ~C0(t) + ( ~M(t)− ~C0(t)) ∧ ~Rθ(t)]

+ ~C0(t) (1)

Dilatation factor derivation. This Equation 1
contains 4 parameters: λ, θ, and the two coordi-
nates of the rotation center ~C0(x0, y0). Let S(t) de-
note the inner area of the curve C(t) at time t. We
can directly derive the dilatation ratio λ(t) from the
curve’s deformations thanks to the formula :

λ(t) =

√
S(t + dt)

S(t)
(2)
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Rotation estimation. Let us define µ = 1
λ(t) ,

~M(t)
(
x1
y1

)
and ~M(t + 1)

(
x2
y2

)
. Then Equation 1 en-

tails two scalar equations which may be rewritten :{
(1− µ)x0 + y0θ = x1 − µx2 + y1θ
(1− µ)y0 − x0θ = y1 − µy2 − x1θ

(3)

This highlights the left hand sides of both equations,
which don’t depend on the considered point. Then
we may remove x0 and y0 by subtracting those equa-
tions for different points number j and k of the curve
C(t), and perform a mean square minimization:

θ = −
∑

(αjkβjk + γjkδjk)∑
(β2

jk + δ2
jk)

(4)

where αjk = xj
1 − µxj

2 − (xk
1 − µxk

2), βjk = yj
1 − yk

1 ,
γjk = yj

1 − µyj
2 − (yk

1 − µyk
2 ) and δjk = xj

1 − xk
1 .

Center estimation. Considering we know θ from
Equation 4, we estimate (x0, y0) with the 2 parame-
ter formulation of the mean square estimation.

4. Results

We draw 2 curves on the endocardium (red) and on
the epicardium (blue). Then we perform the esti-
mation on both curves and on all pixels contained
between them. This is successfully done for 40 rats’
and 40 patients’ sequences.

Contraction and twisting. We plot the cumu-
lated values of the twisting and of the contraction
(
∑

t(θ(t)),
∏

t(λ(t))). Figure 2 shows a representa-

Figure 2. Twisting and dilatation factor on short axis
planes, from the apex (left) to the base (right).

tive example of resulting signals, highlighting the
twisting inversion phenomenon. Those data come
from 2 rats, one healthy (solid signals) and one pre-
senting an infarct near the apex (dashed signals).
Both twisting and dilatation show the loss of the
beating performance in this area (levels 1 and 2).

Localization of the centers. Concerning the lo-
calization of the centers, the results are very inhomo-
geneous. Therefore we only consider the centers cor-
responding to θ ≥ 1. We compute the standard de-
viation of their positions related to the epicardium’s
diameter. The mean values are 30% for the endo-
cardium, 38% for the myocardium and 40% for the
epicardium. The corresponding meaningful centers
are almost always inside the bloody cavity (80%, see
Figure 3), and often closer to the septum. This is in
agreement with the weak deformations occurring in
this area.

Figure 3. Selected centers of a Patient’s sequence, with
the corresponding twisting and dilatation.

5. Conclusion

We performed an original movement estimation on
a curve which gives information about the twisting,
the contraction and the center’s location. The cen-
ter’s positions are intuitively well located for big an-
gle values : in the bloody cavity, near the septum.
This proves the relevance of the performed model-
ing. Moreover, we obtain an objective quantification
of the contraction factor and of the rotation angle at
different depths inside the myocardium. The results
are smooth and give a good description of the curve’s
global movement.
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