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1. Introduction

The distance transform (DT) is the mapping which
gives for each point of an object, its distance to the
nearest point in the complementary of the object.
The distance transform to seeds (DTS) is a gener-
alization of the DT. It maps to each point of the
object, its distance to the nearest point in a selected
set of seeds.

The DT has been studied since the sixties. Many
algorithms have been proposed in different ap-
proaches, but the first linear time algorithm to com-
pute the DT with the Euclidean metric has only been
proposed in 1996 by Hirata [5].

In skeletonization, the notion of medial axis (MA),
the set of centers of maximal balls, is very impor-
tant, since the MA has sufficient information for
the reconstruction of the original shape (reversibil-
ity property). A maximal ball is a ball included in
the object and not completely covered by any other
ball also included in the object. The computation of
the MA depends on the computation of the DT. In
a previous work [8], we have also defined the exact
Euclidean medial axis in higher resolution (HMA).
Based on the DT, we have provided an algorithm for
the HMA in 2D and 3D, but not for nD.

In this paper we show how to use the separable dis-
tance transform algorithm to compute the distance
transform to seeds, and we show how it is applied
on the computation of skeletons in higher resolution,
using the HMA.

2. Distance Transform to Seeds

We denote by DTX the distance transform of X, and
by DT{X,S} the distance transform of X with respect
to the seeds S. We illustrate the concept of the DTS
in Figure 1.

A DTS where the set of seeds is the whole set
of background points is in fact a DT. There is no
doubt that algorithms that compute the DT can be

Figure 1. The distance transform to seeds maps distances
from white (object) to gray (seeds) points.

adapted to compute the DTS. Moreover, some DT
algorithms by propagation [3, 4] are already defined
as a DTS.

Nevertheless, the separable line scanning algo-
rithms proposed in the literature seldom make ref-
erence to this problem. Those who work with the
Euclidean distance are interested on adaptations of
such algorithms, because the separable line scanning
algorithms are the most efficient algorithms for the
Euclidean DT.

Indeed, the Euclidean DTS can be computed by
any DT algorithm in two steps:

1. compute the DT from each point not in the
seeds set S, to the points in S: DTS

2. set points not in X to zero

This is done in linear time by Hirata’s algorithm.
A variation of this algorithm can easily implement
the two steps above in a single function.

We give an example of the DTS in Figure 2.
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Figure 2. Distance transform to seeds. Object points
have the distances to the nearest seed. Seeds are circled.

3. Application: Euclidean skeletons

The following characteristics are desired for skele-
tons: homotopy, centeredness, reversibility, and
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thinness. To produce a skeleton with all those char-
acteristics is very challenging, specially when work-
ing with skeletons centered with respect to the Eu-
clidean distance. In this section we always refer to
the Euclidean distance.

In a previous work, we have presented a homotopic
Euclidean skeleton which is defined in the domain
of abstract complexes [2]. Please refer to the refer-
ence [2] for further information on the advantages of
computing homotopic skeletons in such domain. Ab-
stract complexes are represented in the doubled reso-
lution square grid. In order to preserve reversibility,
the usual approach is to preserve the points of the
MA, i.e., the set of centers of maximal Euclidean
balls inside the object. However, for the doubled
resolution grid, we have defined the HMA [8], which
allowed us to obtain a thinner but yet reversible Eu-
clidean skeleton.

The definition of the HMA is similar to that of the
MA. Consider that an object in Zn is represented
in [ 12Z]n after transformed to the higher resolution.
Consider that a ball in the higher resolution can be
centered at any point of [ 12Z]n, but contains only
points of Zn. Let us call such balls the H-balls. A
H-ball with center x ∈ [ 12Z]n, and radius R ∈ N, is
denoted B<

h (x,R), and is defined by:

B<
h (x, R) = {y ∈ Zn, (2y − 2x)2 < R} (1)

The factor 2 in 2y and 2x assures that the distances
in [ 1

2
Z]n are equal to distances in Zn. The HMA is the

set of centers of maximal H-balls, where a maximal H-
ball is a ball included in the object and not completely
covered by any other H-ball included in the object. If the
H-balls that compose the HMA are reconstructed, every
object point in Zn is reconstructed, and the reversibility
is guaranteed.

Figure 3. Maximal H-ball. A zoom on Figure 2. Circled
points: seeds; squared diagonal star: center x; diagonal
stars: Euclidean disk centered in x with radius 10, in-
cluding points of the background; thick squared diagonal
stars: B<

h (x, 10), a H-ball. The H-ball B<
h (x, 10) does

not include its center x.

In [8] we have provided an algorithm to compute the
HMA. The algorithm detects the radii of maximal H-
balls using the DT of the object in higher resolution.
We have proved that the values of the Euclidean DT are
sufficient to determine the radii of maximal H-balls in 2D

and 3D, but they are not sufficient in nD. In addition, the
algorithm proposed is based on [7] and, although efficient,
it is not O(n).

We can prove that if we take the object X in higher
resolution, and the set S = Zn\X as seeds (see Figure 2),
the transform DT{X,S} gives, for each point of the object,
the radius of the maximal H-ball.

We can thus obtain an efficient algorithm for the n-
dimensional HMA of an object X if we replace DTX by
DT{X,Zn\X}, in the algorithm, where the HMA is repre-
sented in [ 1

2
Z]n.

4. Conclusion

We have presented the application of Hirata algorithm
to the computation of distance transforms to seeds. We
have presented a special set of seeds, the set S = Zn \X,
which generalizes to nD the algorithm that computes the
HMA on the [ 1

2
Z]n grid. The original algorithm was

valid only in 2D and 3D. In a full paper, we will com-
bine the DTS with the approach proposed by Coeurjolly
and Montanvert [1] in order to obtain a reversible subset
of the HMA in linear time, which will allow us to com-
pute, also in linear time, an Euclidean skeleton with all
the desired characteristics listed in the beginning of this
paper.
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