
A branch-and-bound optimization algorithm for U-shaped

cost functions on Boolean lattices

Marcelo Ris and Junior Barrera
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1. Introduction

A combinatorial optimization algorithm chooses the
object of minimum cost in a finite collection of ob-
jects, called search space, according to a given cost
function. The simplest architecture for this algo-
rithm, called full search, accesses each object of the
search space, but it does not work for huge spaces.
In this case, what is possible is to access some ob-
jects and choose the one of minimum cost, based on
the observed measures. Heuristics and branch-and-
bound are two algorithms of this kind. Heuristics
does not have formal guaranty of finding the mini-
mum cost object, while branch-and-bound has Math-
ematical properties that guaranty to find it.

Here, we study a combinatorial optimization prob-
lem such that the search space is composed of 2n

objects, organized as a Boolean lattice, and the cost
function has a U-shape in a maximal chain of the
search space.

This structure is found in some applied problems
such as feature selection in pattern recognition and
W-operator window design in mathematical mor-
phology. In these problems, a minimum subset of
features that is enough to represent the lattice ob-
jects should be chosen from a set of n features. In
W-operator design the features are points of a rect-
angle of Z2, called window. The U-shaped functions
are formed by error estimation of the classifiers or
W-operators designed. This is a well known phe-
nomena in pattern recognition: for a fixed amount
of training data, the increase of features considered
in the classifier design induces the diminishment of
the classifier error by increasing the separation be-
tween classes, until the available data becomes too
small to cover the classifier domain and the increase
of the estimation error induces the increase of the
classifier error. The known approaches for this prob-
lem are heuristics. Some relatively well succeeded
heuristics are SFS and SFFS [5].

We developed a branch-and-bound solution (the
U-curve algorithm) that uses the Boolean lattice
structure and the U-shaped curves to explore a sub-
set of the search space that is equivalent to the

full search. Sophisticated Boolean lattice properties
were discovered and applied to design an adequate
data structure to represent and update the unex-
plored part of the search space.

2. The U-curve optimization problem

The search space is composed of 2n objects, orga-
nized in a Boolean lattice. Let W be a finite subset,
P(W ) be the collection of all subsets of W , ⊆ be
the usual inclusion relation on sets, and |W | denote
the cardinality of W .

The partially ordered set (P(W ),⊆) is a complete
Boolean lattice of degree |W | such that: the least
and greatest elements are, respectively, ∅ and W ; the
sum and product are, respectively, the usual union
and intersection on sets and the complement of a
set X in P(W ) is its complement in relation to W ,
denoted Xc.

We will also represent subsets of W by strings of
zeros and ones, with 0 meaning that the point does
not belong to the subset and 1 meaning that it does.

A chain contained in X ⊆ P(W ) is a collection
A = {A1, A2, , Ak} ⊆ X such that A1 ⊆ A2 ⊆ ⊆ Ak.

Let c be a cost function defined from P(W ) to R.
We say that c is decomposable in U-shaped curves
if, for every maximal chain M ⊆ P(W ), for every
A,X,B ∈ M, A ⊆ X ⊆ B ⇒ max(c(A), c(B)) ≥
c(X).

Figure 1 shows a complete Boolean lattice L of
degree 4 and a cost function c decomposable in U-
shaped curves. In this figure, it is emphasized a max-
imal chain in L and its cost function.

There are a lot of functions describing U-shaped
curves that can be used as the cost function [2].
We have used in our work the mean conditional en-
tropy [4] but we can list other functions with the
same feature: MAE (mean absolute error), CoD
(Coeficient of Determination) [3] and Bolstered Er-
ror [1].

Our problem is to find the element (or elements)
of minimum cost in a Boolean lattice of degree |W |.
The full search in this space is an exponential prob-
lem, since this space is composed of 2|W | elements.
Thus, for huge spaces the full search is not feasible.
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Figure 1. A search space in a Boolean lattice of degree 4.
X = L − {0000, 0010, 0001, 1110, 1111} is a constrained
lattice obtained from L.

2.1 The U-curve algorithm

The U-shaped format of the cost function is the key
to develop a branch-and-bound algorithm, the U-
curve algorithm to deal with this problem.

The algorithm consists of an iterative process and
the search space is represented by the complete
Boolean lattice L. At each iteration, the search space
will be constrained by some restrictions, that is, a
subset of elements that can be discarded from the
search process. The restrictions can be grouped in
two lists: upper restrictions formed by intervals of
the type [R,W ] and lower restrictions formed by in-
tervals [∅, R].

The algorithm looks for local minimum elements
(elements that has lower and upper adjacent ele-
ments with cost bigger than it) by constructing a
chain over the constrained lattice. The chain con-
struction is an iterated procedure that performs the
following steps:

• Choose randomly the chain direction by a de-
fined process: the Direction Selection Process.
We are going to describe the up direction chain
construction (down direction is a dual process)

• Finds a minimal element M contained in the
current constrained space to be the first element
in the chain. This process uses the restrictions
lists to obtain this element.

• The procedure to obtain the minimal element
is based only in the lower restriction list: if the
element obtained is contained in the upper re-
strictions they can be discarded, the upper re-
striction updated with it and, a new iteration

can begin. The restriction update process is a
recursive process that adds an element to the
list (when it is already covered by the list) and
removes from the list the elements covered by
the new element.

• The up direction chain construction process be-
gins with M and flows by inserting an upper
adjacent element E (selected randomly from the
current constrained search space) until it finds
the U-curve condition, that is, E has cost bigger
than the last element M inserted.

• We can notice that M is the minimum element
of the chain obtained, and let A and B be the
elements of the chain adjacents to M with A ⊂
M ⊂ B and, by construction, c(A) ≤ c(M) ≤
C(B). We can prove that any elements C of
the constrained search space with C ⊂ A has
cost bigger than A, and any element D of the
constrained search space with B ⊂ D has cost
bigger than B. By using this characteristic, the
lower and upper restrictions can be updated by
A and B respectively.

• In order to prevent visiting the element M more
than once, a recursive process called minimum
exhausting procedure is executed. This process
visits all the neighborhood elements of a given
element M and turn all of them into minimum
exhausted elements, that is, all adjacent ele-
ments of M in the resulting constrained lattice
have cost bigger than M . During this process,
the restrictions lists are updated by all the min-
imum exhausted elements found.

The algorithm stops when the search space is com-
pletely processed, that is, when the constrained lat-
tice becomes empty.
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