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1. Introduction

We study a special topology on Z
2 and show that

both the Khalimsky and the Marcus-Wyse topologies
as well as one more digital topology and a closure
operator on Z

2 may be obtained as its quotients.
Throughout the text, topologies are thought of as

being (given by) Kuratowski closure operators. Let
p be a topology on Z

2. By a simple closed curve in
the topological space (Z2, p) we mean a nonempty,
finite and connected subset C ⊆ Z

2 such that, for
each point x ∈ C, there are exactly two points of
C adjacent to x in the connectedness graph of p.
A simple closed curve C in (Z2, p) is said to be a
Jordan curve if it separates (Z2, p) into precisely two
components (i.e., if the subspace Z

2 − C of (Z2, p)
consists of precisely two components).

2. A generative topology on Z
2 and

some of its quotients

In every connectedness graph displayed in this sec-
tion, the closed points are ringed. We denote by w

the Alexandroff T 1

2

-topolog on Z
2 with a portion of

its connectedness graph shown in the following fig-
ure:
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Theorem 1. The Khalimsky plane is homeomor-
phic to the quotient topological space of (Z2, w) given
by the decomposition indicated by the dashed lines in
the following figure. Such a homeomorphism is ob-
tained by assigning to every class of the decomposi-
tion its center point expressed in the bold coordinates.

0

2

4

6

8

2 4 6 8

1

2

3

4

1 2 3 4

b

b

b

b

b b b b b

b

b

b

bbbbb

b

b

b b b

b

bbb

b

b

bb

b

b

b

b b b b b

b

b

b

bbbbb

b

b

b b b

b

bbb

b

b

b

b

b

b

b

b b b b b

b

b

b

bbbbb

b

b

b b b

b

bbb

b

b

bb

b

b

b

b b b b b

b

b

b

bbbbb

b

b

b b b

b

bbb

b

b

b

Theorem 2. The Marcus-Wyse plane is homeo-
morphic to the quotient topological space of (Z2, w)
given by the decomposition indicated by the dashed
lines in the following figure. Such a homeomorphism
is obtained by assigning to every class of the decom-
position its center point expressed in the coordinates
with respect to the diagonal axes.
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Let v be the Alexandroff T 1

2

-topology on Z
2 with

a portion of its connectedness graph shown in the
following figure:
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Theorem 3. (Z2, v) is homeomorphic to the quo-
tient topological space of (Z2, w) given by the decom-
position indicated by the dashed lines in the following
figure. Such a homeomorphism is obtained by as-
signing to every class of the decomposition its center
point expressed in the bold coordinates.
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By a closure space we understand a set endowed
with a Čech closure operator [1], i.e., a closure oper-
ator fulfilling all the Kuratowski closure axioms with
a possible exception of idempotency. Let u be the
Alexandroff T0-closure operator on Z

2 with a portion
of its connectedness graph shown in the following fig-
ure where the points that are neither closed nor open
are boxed:
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Theorem 4. (Z2, u) is homeomorphic to the quo-
tient closure space of (Z2, w) given by the decompo-
sition indicated by the dashed lines in the following
figure. Such a homeomorphism is obtained by as-
signing to every class of the decomposition its center
point expressed in the coordinates with respect to the
diagonal axes.
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3. Digital Jordan curve theorems

The following result is proved in [7]:

Theorem 5. Every cycle in the graph (with the
vertex set Z

2) a portion of which is shown in the
following figure is a Jordan curve in (Z2, w):
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Theorems 1-5 enable us to identify Jordan curves
among the simple closed curves in the Khalimsky
and Marcus-Wyse planes, in (Z2, v) and in (Z2, u).
For example, in addition to the digital Jordan curve
theorems proved in [7], we get

a) Let D be a simple closed curve in (Z2, v) with
the property that, for each point (x, y) ∈ D, there
exists k ∈ Z such that y = x+4k+2 or y = 4k+2−x.
Then D is a Jordan curve in (Z2, v).

b) Every simple closed curve in (Z2, u) that is a
cycle in the graph a portion of which is shown in the
following figure is a Jordan curve in (Z2, u):
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